تمارين عامة على الوحدة الأولى

تمارين عامة على الوحدة الأولى

(١) اكتب الأعداد الصحيحة عند النقط أ، ب، جـ، د على خط الأعداد:

مستقيم الأعداد

أ = ٢

ب = ٥

جـ = -٤

د = -٦

(٢) أوجد القيمة المطلقة للأعداد الصحيحة التالية:

-٣٢١، ٧٨، -٥٦، -١٠، ٠، ٢١

-٣٢١ = ٣٢١

٧٨ = ٧٨

-٥٦ = ٥٦

-١٠ = ١٠

٠ = ٠

٢١ = ٢١

(٣) أكمل ما يلي:

أ) ص ط = .....

ط

ب) ص+ ص- = .....

جـ) ص - ط = ......

ص-

د) ص - ص- = .....

ط

هـ) ص+ {٠} = ......

ط

و) - - ٤٥ = ......

-٤٥

ز) مكملة ص+ بالنسبة إلى ص = .....

ص- {٠}

ح) مكملة ص- بالنسبة إلى ص = .....

ط

ط) مكملة ط بالنسبة إلى ص = .....

ص-

(٤) اكتب أقرب عدد صحيح يجعل العبارات التالية صحيحة:

أ) - ٤ > ......

- ٤ >

ب) ٢ < ......

٢ < ٣

جـ) صفر > ......

صفر >

د) -٦ < ......

-٦ <

هـ) -٦ > ......

٦ < ٥

و) صفر < .....

صفر < ١

(٥) أكمل بنفس التسلسل:

أ) - ٢٠، -١٨، -١٦، ....، ....، ....

-١٤، -١٢، -١٠

ب) -١٥، -١٠، -٥، ....، ....، ....

٠، ٥، ١٠

جـ) -٤، ٠، ٤، ....، ....، ....

٨، ١٢، ١٦

(٦) رتب الأعداد التالية تصاعدياً:

أ) -٩، ١٧، -٩، -١٥، ١٦

الترتيب التصاعدي: -١٥، -٩، -٩، ١٦، ١٧

ب) ٣، -٣٠، -٨، ٠، ١١

الترتيب التصاعدي: -٣٠، -٨، ٠، ٣، ١١

(٧) عبر رمزياً بطريقة الصفة المميزة عن المجموعات التالية:

أ) مجموعة الأعداد الصحيحة السالبة.

ل = {أ : أ ص، أ < ٠}

{-١، -٢، -٣، -٤، .....}

ب) مجموعة الأعداد الصحيحة الفردية.

ل = {أ : أ ص، أ عدد صحيح فردي}

{..... ٥، ٣، ١، -١، -٣، -٥، ....}

جـ) مجموعة الأعداد الصحيحة الزوجية السالبة.

ل = {أ : أ ص-، أ عدد صحيح زوجي}

{-٢، -٤، -٦، -٨، .....}

د) مجموعة الأعداد الصحيحة المحصورة بين -٣، ١٣

ل = {أ : أ ص، أ -٣ < أ < ١٣}

(٨) أوجد ناتج ما يلي:

أ) (-١٢) + ٧

= -٥

ب) ١٩ - (-١١)

١٩ + ١١ = ٣٠

جـ) -٧٧ + (-٣ + ٧٧)

-٧٧ + ٧٤

= - ٣

(٩) أوجد ناتج كل مما يلي:

أ) (-٢) + ٨

= ٦

ب) (-٥) + ٥

= ٠

جـ) (-٥) + (-٢)

= -٧

(١٠) أكمل لإيجاد الناتج فيما يلي مع كتابة الخاصية المستخدمة في كل خطوة: ١١٦ + ١٩٠ + (- ١١٦)

= ١١٦ + (....) + ١٩٠ خاصية .......

١١٦ + (-١١٦) + ١٩٠ خاصية الإبدال

= (١١٦ + ....) + ١٩٠ خاصية .......

(١١٦ + (-١١٦) + ١٩٠ خاصية الدمج

= ..... + ١٩٠ خاصية .......

= صفر + ١٩٠ خاصية المعكوس الجمعي

= ١٩٠ خاصية .......

= ١٩٠ خاصية المحايد الجمعي

(١١) تحقق من خاصية انغلاق الجمع والطرح على المجموعة التالية:

س = {-٥، ٨، ٦، -٢}

  • أولا: الجمع: -٥ + ٨ = ٣ س

س ليست مغلقة بالنسبة لعملية الجمع.

  • ثانياً: الطرح:

-٥ - (٨) = -٥ + (-٨)

= -١٣ س

س ليست مغلقة بالنسبة لعملية الطرح.

(١٢) أوجد ناتج ما يلي بطريقتين:

أ) -٦ × [(-٣) + ٢]

الطريقة الأولى = -٦ × [(-٣) + ٢]

= -٦ × -١

= ٦

الطريقة الثانية = -٦ × [(-٣) + ٢]

= -٦ × (-٣) + (-٦) × ٢

= ١٨ + (-١٢)

= ٦

ب) [٧ + (-٤)] × ٩

الطريقة الأولى = [٧ + (-٤)] × ٩

= ٣ × ٩ = ٢٧

الطريقة الثانية = [٧ + (-٤)] × ٩

= ٩ × ٧ + ٩ × (-٤)

= ٦٣ + (-٣٦)

= ٢٧

(١٣) أوجد قيمة م إذا كان: (-٧) × م = ٤٢

م = -٦

(١٤) أوجد قيمة ما يلي:

أ) (-٤)٢ × ٣٣

= -٤ × -٤ × ٣ × ٣ × ٣

= + ١٦ × ٢٧

= ٤٣٢

ب) (-١)٣٠ + (-١)١٣

= + ١ + (-١)

= صفر

جـ) (-٥)٣ × (-١)١٧

-٥ × -٥ × -٥ × -١

= - ١٢٥ × (-١)

= + ١٢٥

د) ١١٢ ÷ ٨٢

١١٢ = ٣٢ = ٢ × ٢ × ٢ = ٨

هـ) (-٤)٩ ÷ (-٤)٧

(-٤)٩-٤ = (-٤)٢ = -٤ × -٤ = ١٦

و) (-٣)٧ ÷ ٤٣

- (٣)٧ - ٤ = - (٣)٣ = - ٢٧

(١٥) أكمل الجدول التالي:

وصف النمط النمط العددي
كل عدد ينقص عن سابقه بمقدار ٥ ٧٥، ٧٠، ٦٥، ٦٠، ٥٥، ....
كل عدد يقل عن سابقه بمقدار ٤ ٢٠، ١٦، ١٢، ٨، ....
كل عدد يساوي حاصل ضرب سابقه في ١٠ ١، ١٠، ١٠٠، ١٠٠٠، ....
كل عدد يساوي حاصل ضرب ٢ في العدد السابق له ٢، ٤، ٨، ١٦، ....

(١٦) أوجد ناتج كل حالة مما يلي:

أ) (-٥)٣ × (-٥)٢(-٥)٤

= (-٥)٣+٢(-٥)٤=(-٥)٥(-٥)٤ = (-٥)٥-٤ = -٥

ب) (٢)٥ × (-٢)٣(-٢) × ٢٤

= (٢)٥× - (٢)٣- (٢)×٢٤=- (٢)٥ + ٣- (٢)١ + ٤=- (٢)٨- (٢)٥ = (٢)٨-٥ = (٢)٣ = ٢ × ٢ × ٢ = ٨

(١٧) استنتج: قاعدة النمط المعبر عن التصميم التالي، ثم اكتب النمط العددي المعبر عنه:

عدد القطع المستقيمة

عدد القطع المستقيمة:

٤، ٧ ،١٠، ١٣

النمط العددي:

٤، ٧ ،١٠، ١٣ .......

قاعدة النمط:

كل عدد يزيد عن سابقة بمقدار ٣

(١٨) يدخر شريف ٥١ جنيهاً كل شهر، كم شهراً يحتاجها ليدخر ٣٠٦ جنيهاً؟ اكتب النمط العددي المعبر عن ذلك، وصفه.

الشهر الأول = ٥١، الشهر الثاني = ١٠٢، الشهر الثالث = ١٥٣، الشهر الرابع = ٢٠٤، الشهر الخامس = ٢٥٥، الشهر السادس = ٣٠٦

عدد الأشهر التي يحتاجها ليدخر ٣٠٦ جنيهاً هي ٦ شهور.

النمط العددي هو: ٥١، ١٠٢، ١٥٣، ٢٠٤، ٢٥٥، ٣٠٦

وصف النمط: كل عدد يزيد عن سابقه بمقدار ٥١

(١٩) أكمل ما يلي:

أ) أصغر عدد صحيح موجب هو ..... وأكبر عدد صحيح سالب هو .....

أصغر عدد صحيح موجب هو ١ وأكبر عدد صحيح سالب هو

ب) مجموعة الأعداد الصحيحة غير الموجبة = ......

{٠، -١، -٢، -٣، -٤، .......}

جـ) مجموعة الأعداد الصحيحة غير السالبة = ......

{٠، ١، ٢، ٣، ٤، .......}

د) ..... ليس عدداً موجباً وليس عدد سالباً

الصفر ليس عدداً موجباً وليس عدد سالباً

هـ) العنصر المحايد الجمعي هو ..... والعنصر المحايد الضربي هو .....

العنصر المحايد الجمعي هو صفر والعنصر المحايد الضربي هو ١

(٢٠) استخدم خواص الإبدال والدمج والتوزيع في إيجاد ناتج ما يلي:

أ) -٧٤ + ٦٥ + ٦٤ + (-٦٥)

= (-٧٤ + ٧٤) + (٦٥ + (-٦٥) خاصية الإبدال والدمج

= صفر + صفر خاصية المعكوس الجمعي

= صفر خاصية المحايد الجمعي

ب) ٦٣ × ٨٥ + ٦٣ × ١٥

= ٦٣ (٨٥ + ١٥) خاصية التوزيع

= ٦٣ (١٠٠)

= ٦٣٠٠

جـ) ٥٤ × ١١٧ - ٥٤ × ١٧

= ٥٤ (١١٧ - ١٧) خاصية التوزيع

= ٥٤ (١٠٠)

= ٥٤٠٠